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Effects of dynamic unbalances are determined for an
axially symmetrical, dual-spin space station consisting of a
rotating artificial gravity section and a controlled, despun
zero gravity section. Configurations with either a rigid inter-
connection or a low coupling flexible interconnection between
sections are considered. Amplitudes of motion and control system
requirements are compared for these configurations. Both configu-
rations are found to experience coning motions. For large space
stations with rigid interconnection, CMGs are found impractical
for reducing coning motions to within allowable limits for many
experiments and special systems such as active mass balancing
are necessary. However, for a flexible interconnection,
coning motions of the despun section are substantially reduced

and CMGs could be utilized to reduce motions to acceptable levels.
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1.0 Introduction

For the future,NASA is considering a large, manned
space base which will provide artificial gravitv and zero
gravity environments simultaneously in separate sections.l
Artificial gravity will likely be obtained by spinning of
the artificial-g section so that objects within experience
a radial acceleration toward the spin axis. However, if
the spin axis of this section is not coincident with a
principal axis of inertia, large inertia torques are imparted
to the space station. These torques can be much greater in
magnitude than gravity gradient, aerodynamic, and other
environmental torgues and have a corresponding greater
effect on attitude motions.

Because of uncertainties in construction and because

future space stations will provide freedom of movement for crew
members and equipment, the location of principal axes of inertia
for the rotating section will not only be imprecisely known but

also will be continually changing. Consequently, deviations of

the spin axis from a principal axis of inertia and resulting

disturbance torques are inevitable.

Following is a discussion of the effects of small spin

axis misalignments on the attitude motion and control moment

gyro (CMG) reguirements for two axially-symmetric, dual-spin

space base configurations. One configuration involves a rigid

interconnection between the despun and spinning sections. The
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other involves an interconnection which transmits only low levels
of torgue normal to the symmetry axis. The more complex low
coupling interconnection is considered because it could, as suggested
in Reference 2,substantially reduce attitude motions of the despun
section.

A comparison is given here of the amplitudes of motion
and also CMG requirements for the rigid and low coupling inter-
connections. Details of the system analysis are covered in the
analysis section and the Appendices.
2.0 Results

A dynamical representation for a space base configuration
is shown in Figure 1. Low coupling interconnection between the
spinning and despun sections is characterized by the gimbal system
shown in Figure 2. The gimbal svstem represents interconnections
for which relative motions of the satellite sections maybe adequately
described by rotations alone. Gimbal axes torques are assumed to
have components proportional to gimbal angle deflections and gimbal
rates. Rigid interconnection between bodies is characterized by
taking the constant of proportionality associated with gimbal

deflections to infinity.

System details and solutions to the space base equations
of motion are given in the analysis section. Equations of motion
for the spacecraft are formulated in Appendix A. A method of
successive approximations for integrating the equations of motion
and a means for establishing asymptotic stabilitv of motions are
given in Appendix B. CMG requirements necessary to provide the
prescribed control torques on the despun section are found in

Arpendix C.
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For either a rigid interconnection or low coupling
interconnection, the symmetry axis of the despun section traces
a right circular cone in space. CMGs cannot significantly
decrease the coning amplitude unless composite CMG spin angular
momentum is of the order of a limiting value. Both the coning
angle and CMG momentum capacity necessary to reduce this angle
are substantially less for the low coupling interconnection

than for the rigid interconnection.

For example, a space base configuration* with rigid
interconnection which has been suggested for study by NASAl(a)
experiences coning with a half angle of 0.54° for 0.5° spin
axis misalignment and low levels of attitude control.** Thisg
value 1s unacceptable for fine pointing space station experi-
ments3 rigidly mounted. Also, resulting accelerations are
unacceptable for crystal growth and other experiments. To
significantly reduce the amplitude of motion would require the
momentum capacity of more than 730 CMGs of the Skylab type

(2300 ft-1lb-sec per CMG).

For the same space base configuration with a low
coupling interconnection, the despun section experiences coning
with a 0.037° half angle for low levels of attitude control.

To significantly reduce this amplitude would require the

momentum capacity of only four CMGs of the Skylab type. These
results are for a gimbal design in which the gimbal axes intersect
one foot or less from the mass center of the spinning section

and for gimbal stiffness and damping coefficients adjusted to

suitably low levels. It appears probable that in practice coning

*Thisg configuration consists of a Y-shaped rotating section
attached to a hub with a despun section.

**This corresponds to CMG spin angular momentum so small that
the CMGs do not significantly influence the amplitude of coning

motion.




BELLCOMM, INC. ~o4 -

amplitudes and CMG requirements could be reduced further, perhaps
an order of magnitude, for gimbal torque coefficients adjusted

to lower levels. However, verification of stability of the re-
sulting motion requires more general analytic techniques. The
most efficient of these involves computer applications which re-
quire specific assumptions on system parameters. Since the main
purpose here is to demonstrate possible advantages of low coupling
interconnection over rigid interconnection, such detailed computer
work is beyond the scope of this study.

For space base with rigid interconnection, CMG's do not
appear practical in reducing coning motions induced by mass un-
balances. Since reaction jet attitude control alone is also im-
practical for long duration orbital missions, special systems such
as active mass balance system52 would have to be employed. Such
systems are complex and require a substantial weight penalty. A
low coupling interconnection however may provide a passive system
for alleviating coning effects that is relatively simple and lower
in weight. Experiments requiring small motions could be housed
in the despun section which could be controlled by a reasonable
number of CMG's while the spinning section experiences its coning
motion. Since restrictions on motions (wobble) resulting from
crew comfort requirements are substantially less than those re-
sulting from experiment requirements, the coning motion of the
spinning section might well be acceptable. For the space base
example given above, motions of the spinning section are within
limits of current estimates4 for crew tolerance.

In conclusion, the results of the analysis section may
be applied for investigating other aspects of attitude control
of dual-spin satellites than are considered here. For example,
maximum acceptable misalignments for specified CMG momentum and
torque capacity and effects of bearing assembly flexibility can

be determined.
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ANALYSIS

System Description

The space station dynamical model to be considered is
shown in Fig.l and consists of two sections attached by a mass-
less gimbal arrangement shown in Fig.2. The satellite is stabil-
ized by CMG's providing three axis control on one of the sections.
The other section is assumed driven at a constant rate about a
line which is not a principal axis of inertia for that body. (The
results for amplitudes of satellite motion and CMG requirements
with B driven are adequate piecewise representations for B freely
spinning, as discussed in the following section.)

System details and terminology are given as follows:

The spinning section is termed body B and the other section is .
termed body A. Both are axially symmetrical with principal mom-

ents of inertia for their mass centers denoted by B, and AE,

3
respectively, in the directions of the symmetry axes and By and
Ay respectively, in directions normal to the symmetry axes. For

body B, the mass is designated M the mass center is designated

Bi
B*, and a righthanded, mutually orthogonal set of unit vectors
parallel to principal axes of B at B* is designated by g1,22,23.
Similar quantities for body A are mass MA’ mass center A*, and
unit vectors 211855850 parallel to principal axes at A¥*,

An inertially fixed set of unit vectors 210789078307 is
defined by the initial orientation of 8q085123 at time t=0. The
orientation of 21785084 {and conseguently A} at some subseguent
time t is described with respect to 2107850783¢7 by a 1,2,3 se-

guence of three axis Euler angles ¢l,¢2,¢3e Also, the CMG con-

trol torque on A is assumed related to ¢l,¢2,¢3, by
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C A
T

(1)

-

= “[<K0¢1+K1¢1)il + (K0@2+K1¢2)§2 + €K03¢3+Klq¢3)g

Lad

Body B is driven at a constant rate » about a drive axis
which is slightly misaligned from the principal axis in the direction

§ ¥ 1]
3+ Let by, by, by
H

unit vectors fixed in B with Q3 in the direction of the drive axis

and let the transfer relations between Ei and 95 be given by

of b be a right handed set of mutually oxthogonal

3
b, = J b.., b. (2)
i s=p 31t 73

The drive axis of B intersects B* and point 0 which is
the common intersection of the symmetry axis of A and the axes
of the gimbal connecting A and B. A* and B* are located at dis-
respectively, from 0. Rotations 6, about gimbal

1
about gimbal axis G2 describe the orientation of

tances QA and RB’

axis Gl and 62

the drive axis of B with respect to ayr 8y, 25 as shown in Fig. 2.
Cyr Cyr S5 designate unit vectors such that C, is parallel to
the drive axis, <5 is parallel to G2, and cq completes the mutually

orthogonal right-handed set. Motion of A relative to B is resisted
by gimbal axes torgue Ggé on A with components GTiA along Gi given
by

T = Co8. + C.6. i= 1,2 (3)

These torgues represent gimbal stiffness and dissipation.
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SYSTEM ANALYSIS

Equations of Motion

Gravity gradient and other environmental torques may
be neglected in the formulation of equations of motion because,
for rotation rate w much greater than orbital rate, their magni-
tudes are much smaller than the magnitude of torque associated
with misalignment of the spin axis of B.

Although body B is assumed driven at a constant rate,
for some applications it could he practical to assume zero torque
on 3 about the spin axis so that B is freely spinning. This
implies L defined in Eg. (A-13) vanishes. Eq. (A-7) shows that

the time derivative of the component along ¢, of the inertial

angular velocity of B is very small for smali spin axis mis-
alignments. Then the spin speed of B is changing very slowly
and could be considered constant over some interval of time.
Although significant changes in mean spin speed can occur over
very long time intervals, the following results for amplitudes

of satellite motion and CMG requirements with B driven at a

constant speed likely yield adequate piecewise representations
with B freely spinning. Spin speeds of B could be considered
constant over successive long intervals of time with variation

in constant values between intervals computed by Eq. (A-7).

The three Euler angles ¢l, ¢2, ¢3, which describe the
orientation of body A relative to inertially fixed axes, the
two gimbal angles el and 82,
B about its spin axis provide a complete description of the

and the prescribed rotation wt of

satellite orientation. Linearization about initial state
¢i = Sj =0, 1=1,2,3; jJj = 1,2 of the equations of motion formu-
lated from Eg. (A-6)- (A-13) of Appendix A yields

¢l{Bl+Bbl+MQB(2A+QB) + B(ebzs2mt+b302mt)} + ¢2B(b332wt+b202wt)

+ 2¢33b33(bl30wt=b235wt)
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. 2 ' . )
+ el[Bl+Bbl+MgB+B(mbzgzwt+b3a2wi}} 4 SZB(bgsgwt+b2C2wt)

- élmB(b3s2wt+b c2ut)

2

o

+ $2w[B3—Bbl+B(=bzs2wt+b3c2wt)] = 4¢3uBb 34 (b, scut+tb, Jswt)

+ él[Cl—wB(b3s2wt+b c2wt) ]

2

2

+ sz[B3—Bbl+B(—b252wt+b302wt)] + elCO = 2w Bb33(b23cwt+bl35wt)

(4)

¢lB(b352wt+b202wt) + ¢2[Bl+Bbl+M2B(2A+QB) + B(bzszwt~b3c2wt)]

<+

2$3Bb33(b23cmt+b swt)

13

+ élB(b s20t+b.c2ut) + 62[Bl+Bb +MQ§+B(b252wt=b c2ut) ]

3 2 1 3

- ¢lw[B3“Bbl+B(b252wt—b c2wt) ]

3

+ ész(b3s2wt+b2c2wt) + 4$3wBb33(b13cwt-b2 swt)

3

- élm[BB—Bb +B(b,s2wt-b.c2uwt) ]

1 2 3

+ 4 +uB (b ys2ut+b,c2ut) ] + 6 = -20%Bb cut-b._ suwt)

2 1Cy 2Co 33013 23

(5)

20,Bb 5 (byjCut=b, sut) + 2$Zab33(bZBth+b13swt) + $3(A3+B3w23b1)

2918b33<b1_3c‘”tmb238‘”t) + ZG?Bbgg(bZBth“%blBSwt} 4 é3K13*%¢3K03“& 0

(6)
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¢l{Al+M2A(QA+£B)] + eleAQE + ¢LRL + @lKO - elC} - Glcﬂ = (

(7}

¢2[A1+M2A(2A+2B)] + ezMzAzB + ¢2Kl + ¢2KO - ezcl - ezco = 0
(8)
where
B,-B M
378 ING:) 2
B = M b, = b, .+b b, = 2b, .b
2 MA+MB 1 13 723 2 13723
_ 2,2
by=by3-by3 (9)
and s2wt = sin2wt , c2wt = cos2ut .

Although linearized, these equations involve periodic
coefficients and standard technigques for a closed form solution
are not available. However, they can be written in a standard
matrix form that will be seen to have a stable steady state
periodic solution which may be represented through a method of
successive approximations for small spin axis misalignments.

Now, establishment of a new independent variable,
r = wt Ly =02y = uw) (10)
dt dt

the writing of Egs. (4)-(8) in terms of 1, solution of these

. it i i Ll i ) s s
equations for ¢l’ @2, ¢3i el' 62 and definition of

Xy = X gy i=1, ;D Xipg = @i, i=1,2,3
Ko = B., j=1,2 (11)
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along with
n,, = elkl/A ny, = a/A ny3 = (ah +e h l)/A
Ny = € kO/A nyg = (ah 2+elh01)/
nyp = ky/b Npp = €/ Np3 = (hypthyy)/e
naq = Ko/t s = (hgpthyy) /o
n3p = K3 D32 = Xo3 A=e-a (12)
where
e, = (B;#me2)/3, e, =By/3, h, = C/ul hyy = Co/u’d,
a = QB/Jl kl /wd kO = Ko/m Jl hll Cl/wJl
h = C /w2J
01 0 1
ki3 = Ky3/ud Kogg = Kya/udy (13)
and
Jy = A1+M2A(2A+ZB) J, = B1+MQB(~A B) Jy = AgtB,
d = B/J‘2 (14)
yields equations of motion in a standard matrix form,
x' = [D+ Flr,mlIx + glr,u) = f{r,%x,n) (15)
where p is a two dimensional vector,
)
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Gﬁm
ot
f

Constant matrix D and column vector g are given by

- e

R ny, 0 n,, Ny “hyy 0 0 e 0
-ny, “nyq 0 --n12 nl3 0 —nl4 0 0 .
0 0 _n3l 0 0 0 _n32 0 0
N,y ~hyy 0 “Nyg  Th,g Nyy 0 0 N, 0
N,y N,y 0 Nyy =Nyg 6 Ny 0 0 “n,e
D =
l O
1
1
O l
_ | 1 i
0
91
9= 92 (17)
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where

2 .
g, = 2dl(l@b13mb23} (b23cr+bl3ST)

2 2. 1/?
g, = Zdl(l—bl3-b23) (b23ST“bl3CT) (18)
dl = d/[A + terms of order 2 and higher in bl3’ b23] (19)

The matrix F(t,u) is periodic in © with period 27 with all ele-
ments proportional to first and higher powers in b13 and b23.

Consequently, for b..=b,.=0 then p=0 and both F (1,0} and g(r,0)

13 723
are zero.¥*

As discussed in Appendix B, Coddington and Leviﬁsons
have established a method of successive approximations for deter-
mining periodic solutions to systems of equations with a small
real constant vector p provided certain conditions are satisfied.
These conditions applied to the problem at hand are
i) x'=f(r,xAD=Dx has no periodic solution of period 27 other than
the trivial solution x=0, 1ii) £(t,x%x,p) is analytic in (x,u) for
'U] small. Furthermore, iii} if the real parts of the charac-
teristic roots of matrix D are all negative, then the periodic
solution to Eg. (15) is asymptotically stable for|u| small. Then,
in the steady state, for initial conditions XITZD sufficiently
small, all solutions to Eg.(l5) approach the periodic solution

represented by the method of gsuccessive approximations.

*This corresponds to the drive axis aligned along a princi-

pal axis of inertia.
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Also, for the condition of statement 1ii) satisfied,
statement i) is also satisfied and it is only necessary to test
Eg. (15) with respect to statements ii) and iii).

Since £ involves only the first power in x, it is
obviously analytic, i.e., representable by a convergent power
series, in x. It may be shown that f involves rational func-
137 b23 and Jlﬂblgubzg , all of which are analytic for

|u|<<1l. Products, quotients and sums of these in f are also

tions of b

analvtic since there results no poles (i.e., £ bounded) for
small ]u[. Consequently, £ is analytic and is representable by

a convergent power series in (x,p). Condition ii) is satisfied.

Routhian analysis6 may be used to check condition
iii) whether all characteristic roots of matrix D have negative
real parts. However, for this case Routhian techniques reguire
expansion of determinants of up to order ten. This process may
be made manageable by taking advantage of the properties of the
two satellite configurations of concern.

For rigid interconnection between satellite sections,
CO is very large and Dyg and n,c are very much greater than the
other nij of matrix D.

As previously mentioned, a design that attenuates the
effect of the motion of B on that of A is desired. Egs.(7) and
(8) show that the motion of A is decoupled from the motion of B
C

if Mg C, are zero. Although zero values cannot be

0f 71

achieved in practice, this suggests satellite design so that

atmr

these are small. This low coupling design is characterized by
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regarding Nygr Nyge Ny Noygy Noe 3S small compared to the other
nij of matrix D. This corresponds to relatively small gimbal
axis torques and to locating the intersection of the gimbal axes
close to the mass center of A or B.

The above considerations enable one to neglect higher
order powers of small parameters in the expansion of the Routhian
determinants and conditions for all the characteristic roots of

matrix D to have negative real parts are found to be

K K > 0 (20)

o' Ky Kpge Kyg

for a configuration with rigid interconnection and

17 Kogr Ky3r Cpr €y > 0 (21)

for a configuration with low coupling interconnection.
Consequently, for Eg.(20) or (21) satisfied, the con-
dition of statement iii) is satisfied and for |u| and XlT:O small,
the method of successive approximations may be applied to deter-
mine the steady state solutions of Eq. (15). Carrying terms to

first powers in b13 and b23,

¢l = qllST+quCT ¢2 = quST“qllCT ¢3=0 (22)

oD
Il

1 qusr+q220T 62 = d,58T=q,CT (23)
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where

2 2
[*Xl(VZ'V3) + Xz(V4“Vl)]/[(V2-V3) + (V4—vl) 1

Q
|

21

gy = [ A (V) + Ay V)=V ) 1/ 10,V 2+ (V,=v) )

}p72dby 3 Ag=2dby g gy =Ny ma, 0Ny 9y 5=a, Ny gy N,

V} = N2~U5 V2 = Nl~U7 V3 = N1U6 V4 = U6(1+N2)

N. = (U.U 4U.U.) / (U2+02) N, = (U.U,-U.U.)/(U%+0%)  (24)
Ny 1UgtU,U5 1795 2 3047010y 17U

and

Uy = k-1 U, = -(athy,) Uz=kq Ug=hyq

Us = hgymey Us = ey Us=hi, (25)

137 b23 of the drive axis of

B, Egs. ({22) and (23) give first order approximations to satellite

For small misalignments b

motion for either rigid interconnection (h h very large) or

01" 02

low coupling interconnection (h hOZ’ hll’ hyo and a very

oL’
small) between A and B (See Eq. (13)).

Discussion of Solution

Rigid Interconnection:
For small amplitude motions, the angle v which the
symmetry axis of A makes with its nominal direction (that for

hioh ;1:;756 is accurately given by
1/2
22,77

b = (87+83) (26)
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and taking hOL and h to infinity in Eq. (20} gives

02
2 5. 1/2
v = 8, /[(1+R5) " + RJ] (27)
where
, 5 1/2
§p = (by3+by3) (By=By)/(B3=J)
R, = Ko/w2(B3-J) R, = K;/uw(By-J) 3 = 3,43, (28)

Since b is constant with respect to time, the symmetry axis
once each period T=2r/w sec traces a right circular cone with half
angle wr.

For satellite motion given by the solutions ¢l’ ¢2,
$34 the minimum magnitude ﬁ? of CMG angular momentum necessary
to provide the control torque of Eg.(l) is determined as shown in

Appendix C.

1/2
- 2 .2 2 2
H = Hor{(R0+Rl)/[(l+R& + Rl]} (29)
5 2 1/2
where Hy, = (b3+b,3) w}B3mBl| (30)

Now the values of wr/sr and Hr/HOr can be plotted
against RO for varying Rl' However, the nature of these curves
depends upon whether By-J is greater than or less than zero.

Defining

R, = *R R.T = +R (31)
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where the positive sign is taken for BE~3>05 and the negative
sign is taken for B3MJ<0, Figs. 3 and 4 show the variation of

= . + + .
wr/ér and Hr/HOr with respect of RO and Rl and Figs. 5 and 6
show the variation of wr/sr and Hr/HOr with respect to RO and Rl‘

These plots reveal the following:

1) For a satellite with B3—J<0, values of Ko
in the region of K0=m2(J—B3) should be
avoided.

2) TFor decreasing R, R? or Ra, R1 correspond-
ing to decreasing CMG spin angular momentum,
the satellite coning angle approaches

, o 172
bp = 8, = (by53+b,%) 1(33-31)/(33—J)t (32)

This limiting value of ¥,=8_. is hereafter

called the light control coning angle.

For increasing R+, R; or RB, Ri, the control moment
gyros cannot have significant effect in decreasing the satellite
coning angle until the magnitude of their composite spin angular
momentum is of the order of the limiting value

1/2

2 2 ;

r Or

Low Coupling Interconnection:
For a low coupling interconnection between bodies A

and B, it can likewise be shown that the symmetry axis of A
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traces a right circular cone with half angle ¥, once each period
T=2n/w s€cC.

1/2

| nal \®)

2
b, = 62/[(—l+k0) + k

where
1/2 5 1/2

2
8, = (by3tbyg)  [(hy,+a)” + hyq]

= 2
7 J=B3—B =M1

I(B3'Bl)/3 17 Meyg

(35)

and OZ(hOl’ h02’ hll’ hlz,a) is a term of first order in b13 and
b23 multiplied by second and higher powers of hOl’ h02, hll' hlé,a
and consequently may be neglected. Also, dropping higher powers
in these small parameters, the minimum magnitude ﬁz of CMG angular
momentum necessary to provide the control torques of Eqg.(l) is
determined as shown in Appendix C.

1/2

= _ 2,,2 _ 2 2
where
> 5 1/2 5 2 1/2 _
Hy, = wJ; (by5+b,73) [(hy;+a)" + hy]] |(B3—Bl)/J| (37)

The plots of y /6,6 and ﬁz/HOQ are similar to the
plots of Fig. 5 and Fig. 6 where the ordinates are replaced by
wg/ég and HQ/HOQ and RO and Rl are replaced by ko and kl’ respect-
ively. The following observations may be made.
1) Values of K, in the region Kgmwzjl should be

avolided
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ot
W
§

2} The satellite contrel system is not capable
of producing significant reductions in the
magnitude of the coning angle from the

light control value w2=6 unless the magni-

L
tude of the CMG composite angular momentum
is at least the order of magnitude of the

limiting value HZ=HDQE

Applications

Now the coning angle of A and control system require-
ments for a satellite with a low coupling interconnection are
compared to those for the same satellite with a rigid inter-
connection. The ratio of 1light control coning angles is

‘{(h01+a)2 + hli] (38)

IBB—J
J
A corresponding ratio of minimum values of CMG composite angular
momentum necessary to significantly reduce the light control
coning angles is

2 2
1

HOQ/HOr: {(h01+a) + h.9] Jl/EF (39),

Consequently, for h hllg small quantities corresponding to

orr s
small gimbal axes torque coefficients and the gimbal axes inter-
section located near the mass center of A or B, both the magni-

tude of the light control coning angle and control system

requirements necessary to reduce that angle can be substantially




smaller for a low coupling interconnection between the spinning
and despun bodies than for a rigid interconnection.
This can be further illustrated by example. WNASA has

suggested for Studyl(a)

large space base that consists of a

hub with a non-rotating section and a rotating section to which
three spokes are attached in a Y fashion and that is spinning

so as to provide an artificial gravity compartment at the extrem-
ities of one of the spokes. To within NASA's margin of error for

mass estimates, the space base is assumed to be axially symmetri-

cal with the following mass properties.

B, = 9.5x10° slug-ft2 M

, 1.1x10% slugs

A

3el><104 slugs

it

2.+8.. = 17 £t MB

Additional data was not available. However, the spinning section
B presents a flat profile and its inertia characteristics approach

those of a plane figure. Hence, the following appears reasonable

4.85x108

w
i

slug»ftz
and

A, = 3BZXIO7 slugmftz

Now due to uncertainties in construction, structural
deformations, and relocations of men and equipment, misalignment
of 0.5° and more of the spinning section principal axis of

inertia from the spin axis appears possible.
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By Eg.(32), a 0.5° misalignment results in a light
control coning angle of wr=6rﬁ0.54°. A coning angle of 0.54° is
likely unacceptable. This amplitude of motion is outside the
fine pointing requirements for many experiments planned for
future space stations3. Also, for this amplitude and w=4rpm,
locations at distances greater than four feet from the space base
mass center experience instantaneous accelerations greater than
10_49. Some experiments, such as those involving crystal growth,
require accelerations perhaps less than lO_Sg.

Now if for these or other reasons the coning angle
is unacceptable, then, as declared in statement 2) above, for a

significant reduction the CMGs must have a momentum capacity of

at least the order of H
6

0r" For w=4rpm,Eqg.(33) gives Hr=H0r=

1.69%x10" ft-lb-sec, a value far beyond the capacity of existing
CMGs, 2300 ft-lb-sec per CMG for the Skylab type.

Now for the same configuration designed with a low
coupling interconnection, the parameter a can be made less than
4><lO‘3 by constructing the gimbal system such that the gimbal
axes intersection lies one foot or less from the mass center of

either body. Also, even for gimbal axes torques of the order of

a thousand foot pounds, hol and hll are less than 0.05.

i i . - =3 =h . = -
Consequently, taking a=4x10 -, hOl—hll—O,OS, QB_l ft

3

and using Eqg. {38}, 5230.068x6r:06037°. Also, for a significant
reduction in this coning angle, the CMGs must have a momentum

capacity of at least the order of HO From Eg. (39},

0"

=2
HOQ"O‘537X10 xHO

vided by four Skylab CMGs.

r:9100 ft-1b-sec, a value which could be pro-
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In practice values of hOl and hll much less than 0.05
probably can be obtained. Although these potentially offer
greater reductions in motion and control requirements, such
small hOl and hll are not considered here due to mathematical
complications resulting from these guantities approaching the
size of the measure |u| of spin axis misalignment. Questions of

stability arise because it is necessary to consider h and h

01 11
as being of the order of |u| so that terms involving these are
shifted from matrix D to matrix F in Eg.(15). Then D has zero
characteristic roots and the foregoing stability analysis does
not apply.

Nevertheless, it seems probable that stability diffi-
culties do not occur except for imaginary parts of the character-
istic roots for matrix D of Eqg.(1l5) in the regions of 2nnm,
n=x1,+2,++-+ and for system design to avoid these regions, very
small values of hOl and hll and corresponding very small motions
and control requirements could be achieved. However, to verify
this supposition requires more general techniques, the most
practical probably being numerical Floguet analysis. Since the
main purpose of this study is to demonstrate that low coupling
interconnection may offer advantages over rigid interconnection,

such a detailed computerized approach reguiring specific choices

of system parameters is beyond the scope of this work.

1022-RAW~cds R. A. Wenglarz

Attachments
References
appendices A, B, C
Figures 1-6
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FORMULATION OF EQUATIONS OF MOTION

Neglecting gravity gradient and other environmental

torques, the equations of motion of bodies A and B may be

written

dEA B_A B_A CnhLA d VA B_A

dc T+ QA a3 x F o+ T E_ E. F

an” B,.A B_A G.B_B_A

I = - LI‘_ + Q'B 93 x TF MB (V +V = FT=- _I:: {a-1)
where gA, gp are the angular momenta of A and B respectively,
BTA, B are the torque and force of B on A, Ggé, GE? are the

forces of gravity on A and B, XA is the inertial velocity of the
mass center A* of A, V is the velocity of mass center B* of B
relative to A*, and the remaining quantities are defined in the
analysis section.

The two translational vector equations of motion can

be solved for BEA after eliminating Yé,
B_A MpMp A¥ 1 G B G A |
F" = - o e b e (M F T - F) (A-2)
= (i 4y at & (M) A=~ Ml

The forces of gravitational attraction are given by

£y M

ég}

mg o
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where v is a gravitational constant, RAf Ry are the magnitudes
and unit vectors p,, p, are in the directions of the vectors from
A*, B*, respectively, to the mass center of the attracting body.
For dimensions of the satellite very small in comparison to R,,

A
then

Ra £g

o

"B

and

G.B GLA _ _
M,CFC - MpUET = 0 (A-4)

to within terms of order of QA/RA, QB/RA so that

BpA _ _ _'a"B 4
= (MA+MB) dt — (A-5)
and
an® B, A MaMy v ¢ a
— = T = g a, X =— + T (a-6)
dt - A ZMA+MB5 =3 dt -
B
dH M av
_— = - BTA - AMB Cn X == (A=7)
dt - B (MA+MBS =3 dt

The angular velocities EA of A and g? of B can be shown to have

the form

A

w

($,co,c04 + bos6q)ay + (=9 Co,50, + byc03)a, + (6156, + d3)a,

@18y * 0p8; * oaizds (A-8)

B A - - ’ _
612, *+ 6,Cc, + wby (A-9)

A-10
Biby + Byb, + B3bj ( )
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where 81, Bz, 83 are determined by resolving the right side of
Eq. (A-9) into components along principal axes of B. Now EA and

E? may be written

HY = Ajeja) + Ajeyay + Ajagag

H® = ByByby + By8yb, + ByB3bg (A-=11)
Also, V may be written

v= g0t xag ¥ gp0” x gy (a-12)

The reaction torque

BIA of B and A is given by

T = PT0 + L cg (A-13)

where GEA is given by Eg.(3) and L is an unknown component in the
direction of the spin axis of B. Substitution of Egs.(A-8) -
(A-13) into Egs.(A-6) and (A-7) yields six equations of motion in

six unknowns ¢l’ ¢2, ¢3, el, 62, L.
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APPENDIX B

PERIODIC SOLUTIONS TO A SET OF DIFFERENTIAL EQUATIONS

Coddington and Levinson5 have set forth sufficient
conditions for existance and asymptotic stability of periodic

solutions to a set of differential equations of the form
X' = £(t,%, 1) (B-1)

where x is a column vector with n components, f is periodic in
T of period T, and p may be a real constant vector. 1In addition,
a method of successive approximations is established for determ-
ining these periodic solutions.

Following is a brief outline of the discussions of
Ref. (5) with a slight modification in the statement of the
method of successive approximations allowing p to be a column
vector with two components rather than a scaler.

For each 1, let f be analytic (i.e., each fi’ i=1,°"",n
is representable by a convergent power series) in (x,u) for |y

small and consider the case where Eg. (B-1) with u=0 has a solu-

tion p of period T. Defining the first variation of Eqg. (B-1)

—(t,p(1),0)y. = fx(T,p(r},O)y {(B=2}

then,
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Theorem 1 If Bg.(B-2} has no solution of period T other than
the trivial solution y=0, then for small |u|, Eq.(B-1) has a
unique solution g=qg(t,un) periodic in 1 of period T with g(r,0)=
p(t).

Also, it may be shown that g is analytic in u for small
|u] and any 1. Then, g(u,t) has a convergent power series repre-
sentation which for u a column vector with dimension two p = [:;],

has the form

g(t,u) = p(o)(r) + ulp(l'l)(T) + uzp(l'z)(r) + e+« (B-3)

Also, by assumption f£(t,g(t,u),u) has a power series
representation and substituting this together with Eq. (B-3) into

Eq. (B-1) and equating powers of Mys Mo there results

%E(%F £(z,p° (1) ,0)

%2(123 = £, (0 (0, 0pt ) o %ﬁ—l(r,p(o’ (+),0)

%lj—(l'(fg = £ (0P (0,003 4 -g—ﬁ—z—u.p(o’ (<) ,0) (B-4) -
wéere p(O)(T) = p(t). Since g is known to exist as an analytic

function of p, the system (B-4) provides that solution. Suffi-

cient conditions for stability of g follow:
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Theorem 2 If the real parts of the characteristic exponents of
Eg. (B-2) are all negative, then the solution g=g(t,u) of Eq.(B-1)

is asymptotically stable provided |u| and |x| —o are small.




BELLCOMM, INC

APPENDIX C

ANGULAR MOMENTUM REQUIREMENTS FOR CMGs

The equations of motion for the CMG configuration may
be written in terms of the configuration composite spin angular
momentum gc, output torque CEA, and angular velocity Eé of body

A.

I:IC + &).A X EC = = CTA (C_l)

Or, written in terms of components associated with the direc-

tions of the three CMG output axes

Hl + a2H3 - a3H2 = Kl¢l + Ko¢l (C-2)
H2 + a3Hl - alH3 = Kl¢2 + K0¢2 (C-3)
Hy + agHy = aHy) = Kyq365 + Kyqéq (C=4)

Now the value of the a, component of QA is equal to

.

¢i’ i=1,2,3, to the first power in bl3’b23 and substitution of

éi from Eg. (22) for ay in Egs. (C-2)-(C-4) yields
p +odgHy = Kydy + Kooy (C=3)
+ Kb, (C-6)

H3 + ¢1H2 - ¢2Hl = (C=T7)
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Multiplying Egq. (C-5) by él' Eg. {(C=6} by $2, and adding the

result, it can be shown using Egs.(l15) and (16) that

. s e 2 2 2
Hy¢y + H2¢2 = (bl3+b23)P (C-8)
where P is a term involving RO and Rl or k0 and kl, which
implies that Hl and H2 are proportional to blB’b23 and, by
Eqg. (C-7), H,y is proportional to terms of second order in bl3’b23'
Then, to the first power in bl3’b23’
Hy = K¢, + Kyo, i=1,2 Hy = 0 (c-9)

Now Eg.(C-9) can be integrated using Eq. (22) and con-

sidering the mean value of Hl’ H2, H3 to be zero in order to

minimize Igpl , the minimum magnitude H of angular momentum is

then given by

5 1/2
+ H3) (C-10)



B (SPINNING SECTION)

A(DESPUN SECTION)

FIGURE 1 - DUAL SPIN SATELLITE — FLEXIBLE INTERCONNECTION



FIGURE 2 - MODEL OF FLEXIBLE INTERCONNECTION
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